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We study the non-equilibrium statistical mechanics of the two-sided XY chain.
We start from an initial state in which the left and right part of the lattice,

ZL={x ¥ Z | x < −M}, ZR={x ¥ Z | x >M},

are at inverse temperatures bL and bR. Using a simple scattering theoretic anal-
ysis, we construct the unique non-equilibrium steady state (NESS). This state
depends on bL and bR, but not on the choice of the decoupling parameter M.
We prove that in the non-equilibrium case, bL ] bR, this state has strictly posi-
tive entropy production.

KEY WORDS: XY chain; Jordan–Wigner transformation; non-equilibrium
steady state; Bogoliubov automorphism; scattering theory.

1. INTRODUCTION

‘‘Exactly solvable’’ models—allowing some thermodynamic potential (e.g.,
pressure, Helmholtz free energy, or ground state energy) to be explicitly
computed—have been an essential tool in the development of equilibrium
statistical mechanics, especially for our understanding of critical phenom-
ena. Out of equilibrium, the situation is complicated by the fact that the
dynamics starts to play a central role: Very few non-trivial, exactly solvable
models are ‘‘integrable’’ in the sense that their dynamics can also be
described in a sufficiently explicit way. The one-dimensional XY model is
one of the simplest examples of such an integrable system. It describes a
chain of quantum spins with anisotropic nearest neighbor coupling. The
key to its ‘‘exact solution’’ is the Jordan–Wigner transformation which maps
this spin model onto a one-dimensional free Fermi gas (see refs. 18 and 19).



The implementation of the Jordan–Wigner transformation in the two-sided
XY chain model in the framework of Cg-dynamical systems is due to
Araki. (1) The integrability of the model might be traced back to the exis-
tence of an infinite family of commuting first integrals (so called ‘‘master
symmetries’’) first discovered by Barouch and Fuchssteiner. (7) Master
symmetries of the XY model have been studied in the Cg-algebraic frame-
work by Araki (2) and Matsui. (20)

This question of integrability appears to be related to transport prop-
erties: For finite systems, the overlap of the current with conserved charges
prevents the current-current correlations to decay to zero. This ensures the
finiteness of the Drude weight which leads, in turn, to an ideal thermal
conductivity. (11, 30, 31) 2 Numerical investigations also support this fact:

2 To our knowledge, what remains from this relation in the limit of infinitely extended systems
is unknown.

A spin chain in contact with heat reservoirs at different temperatures was
found to violate the Fourier law of diffusive heat conduction as soon as the
system was made integrable by a suitable choice of a critical parameter. (26)

Moreover, the energy transport via spin 1/2 excitations was experimen-
tally found to contradict the diffusive scenario in the chain direction in
Heisenberg-like systems using different materials such as, e.g., SrCuO2 or
Sr2CuO3 which are often considered as the best physical realizations of the
spin 1/2 Heisenberg chain, see refs. 28 and 29. These highly unusual
transport properties in low-dimensional magnetic systems strongly suggest
the study of their non-equilibrium features to which we intend to contri-
bute to some extent in this paper. Furthermore, the XY chain represents
probably the simplest, non-trivial testing ground for some general ideas on
the mathematical structure of non-equilibrium quantum statistical
mechanics. We refer the reader to ref. 16 for a recent review on this subject.

In this paper, we adopt Araki’s description of Cg-dynamical systems
corresponding to the infinite volume XY chain. Following the strategy
proposed by Ruelle in ref. 25, we use scattering theory to construct a family
of translation invariant non-equilibrium steady states (NESS). This
approach allows us to generalize the results of Araki and Ho (6) to aniso-
tropic chains with external magnetic field. The scattering technique being
particularly well adapted to the problem simplifies the construction of
NESS. A similar setting has been considered by Dirren and Fröhlich. (13)

The simple mathematical structure of the NESS allows us to compute
various quantities of physical interest. In this paper, we concentrate on
entropy production, as defined in refs. 15 and 17 and show that it is strictly
positive. In particular, this implies that the NESS carries a non-vanishing

1154 Aschbacher and Pillet



energy current. In a forthcoming paper, we will also discuss correlation
functions and thermodynamic properties of these states.

The paper is organized as follows. In Section 2, we briefly introduce
the model and formulate our main results. Section 3 introduces Araki’s
description of the underlying Cg-dynamical system in terms of Bogoliubov
automorphisms on a self-dual CAR algebra. The scattering theory of this
dynamical system is developed in Section 4. Finally, Section 5 contains the
proofs of our main results.

2. MODEL AND RESULTS

In order to formulate our results, we start this section with a brief
informal description of the XY chain. We refer to Section 3 for a more
precise discussion. To each site x of the lattice Z we attach a copy H{x} of
the Hilbert space C2. We denote by s (x)1 , s (x)2 , and s (x)3 the Pauli matrices
acting on H{x}. Polynomials in these Pauli matrices are called local observ-
ables. They generate a Cg-algebra which we denote by S. A state of the
system is a linear functional w on S such that w(AgA) \ 0 for all A ¥S

and w(1)=1.
For c ¥ ]−1, 1[ and l ¥ R, the formal expression

H=− 14 C
x ¥ Z

((1+c) s (x)1 s (x+1)1 +(1− c) s (x)2 s (x+1)2 +2ls (x)3 ) (2.1)

has well defined commutators with local observables. The operator

AW d(A) — i[H, A],

generates a dynamics on S which is formally given by y t(A)=e itHA e−itH.
More precisely, for any local observable A, one has

d
dt

y t(A)=y t(d(A)). (2.2)

The dynamical system (S, y) describes an infinite chain of spins in which
each single spin interacts with its two nearest neighbors and with an exter-
nal magnetic field l. The parameter c controls the anisotropy of the
spin-spin coupling (see Fig. 1).

Fig. 1. The XY chain.
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Fig. 2. The decoupled XY chain.

Removing the spin-spin coupling across the bonds (x, x+1)=
(−M−1, −M) and (M, M+1) from the sum (2.1) defines a new
Hamiltonian H0, and hence a new dynamics y0. According to the decom-
position of the lattice into three disjoint pieces Z=ZL 2 Zi 2 ZR (see
Fig. 2), H0 is the sum of three mutually commuting terms, H0=
HL+Hi+HR. The dynamical system (S, y0) factorizes into three nonin-
teracting subsystems. We shall denote by (SL, yL),... the corresponding
subsystems. Note that since V —H−H0 is a local observable, the dynamics
y is a nice perturbation of the decoupled one y0.

For each b ¥ R, the dynamical system (SL, yL) has a unique equilib-
rium state wbL at temperature b−1 (in technical terms, this state is
(yL, b)-KMS). We define wbR in a similar way and denote by wi the nor-
malized trace on the (finite dimensional) algebra Si. We consider the
family of y0-invariant states on S defined by

wM, bL, bR0 — wbLL é wi é wbRR (2.3)

as initial data for the dynamical system (S, y). Thus, the two infinite half-
chains play the role of thermal reservoirs to which a finite subsystem is
attached via the coupling V.

Following Ruelle (24) (see also ref. 16), we say that a state m is a non-
equilibrium steady state (NESS) of y associated to the initial state w if, for
a sequence Tn Q+.,

m(A)= lim
nQ.

1
Tn

F
Tn

0
w(y t(A)) dt,

for all A ¥S. We denote by S+(w) the set of such states. It is easy to check
that the elements of this set are indeed y-invariant states. Moreover, due to
the fact that the set of states on S is weak-f compact, the set S+(w) is not
empty.

Our first result shows that a unique NESS is associated to initial states
of the form (2.3).
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Theorem 2.1. For any real bL, bR and for any finite M, the
Cg-dynamical system (S, y) has a unique NESS corresponding to the
initial state (2.3),

S+(w
M, bL, bR
0 )={wM, bL, bR+ }.

Moreover, this state is attracting in the sense that

lim
tQ+.

wM, bL, bR0 (y t(A))=wM, bL, bR+ (A), (2.4)

for any A ¥S.

Remark 1. In the special case bL=bR, the previous Theorem has
been proved by Araki in ref. 1. Then, the state wM, bL, bR+ is the unique
(y, b)-KMS state, and Eq. (2.4) expresses the property of return to equi-
librium of the XY chain. For bL ] bR, c=0, and l=0, the state wM, bL, bR+

has been constructed by Araki and Ho in ref. 6.
To formulate our next result, let us introduce the (2×2)-matrix

valued, 2p-periodic function

T+(t) —
1

1+e−(bh(t)+dk(t))
,

where

h(t) — (cos t−l) s3− c sin t s2,

and

k(t) — sign(o(t)) |h(t)|, (2.5)

with

o(t) — 2l sin t−(1− c2) sin 2t,

|h(t)|=`(cos t−l)2+c2 sin2 t.

The parameters b and d are related to the initial temperatures of the chain
by the relations

b —
bR+bL

2
,

d —
bR−bL

2
.
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For x, y ¥ Z such that x < y and m, n ¥ {1, 2}, we also define the local
observables

Smn(x, y) — s (x)m s (x+1)3 · · ·s (y−1)3 s (y)n ¥S,

and the set of (2×2)-matrices

s11 — −(s3+is2), s12 — s2(s3−is2),

s21 — s2(s3+is2), s22 — −(s3−is2).

Finally, we recall a few basic definitions. Let w be a state on S and
(Hw, pw, Ww) the corresponding GNS-representation of S. A state g on S

is called w-normal if there is a density matrix r on Hw such that
g( · )=Tr(rpw( · )). g is called w-singular if g \ lf for some l \ 0 and some
w-normal state f implies l=0. Any w-normal state g has a unique normal
extension to the enveloping von Neumann algebra Mw=pw(S)'. The state
w is called modular if this extension is faithful, i.e., if AWw=0 implies
A=0 for any A ¥Mw. w is called primary if Mw is a factor, i.e., if its center
Mw 5M −

w consists of multiples of the identity.

Theorem 2.2. The NESS wM, bL, bR+ is independent of M, we there-
fore drop the reference toM in our notation. The state wbL, bR+ is translation
invariant, primary and modular. It is a KMS state for y if and only if
bL=bR. In a sense to be made precise in Section 3, this state is charac-
terized by the correlation functions

wbL, bR+ (s (x)3 )=−F
2p

0

dt
2p

tr[s3T+(t)],

wbL, bR+ (Smn(x, y))=−F
2p

0

dt
2p

tr[smnT+(t)] e−i(x−y) t.

Remark 2. In technical terms, the NESS wbL, bR+ is a translation
invariant, quasi-free state on the CAR algebra obtained from S by a
Jordan–Wigner transformation. See Section 3 for details. The proof of
Theorem 2.2 is given in Section 5, and follows Ruelle’s scattering approach
(see refs. 25 and also 16).

Remark 3. In a more informal way, the NESS wbL, bR+ can be
described as an equilibrium state, at temperature b−1, for the Hamiltonian
HNESS —H+

d
b K, with a long range, multi-body interaction

K —
1
2i

C
x < y
ǩ(x−y)(S21(x, y)−S12(x, y)),
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where ǩ(x) denotes the inverse Fourier transform of k(t). Note that, due to
the singularity of the sign function in Eq. (2.5), ǩ(x) is long range. See also
the remark following Corollary 4.4.

Entropy production in quantum spin systems has been discussed
recently by Ruelle in refs. 24 and 25. A more general approach, based on
the rate of increase of the relative entropy of the state w0 p y t with respect
to the initial state w0, has been proposed in ref. 15 (see also ref. 17). For
the XY chain, these two definitions coincide: The entropy production in a
NESS w ¥ S+(w

M, bL, bR
0 ) is given by

Ep(w) — bL w(FL)+bR w(FR),

where FL and FR are the heat fluxes leaving the infinite reservoirs ZL and
ZR and entering the finite box Zi. The formal expression for these fluxes is

FL=−i[H, HL], FR=−i[H, HR].

Due to the local structure of the Hamiltonians, these expressions make
sense, even though the Hamiltonians themselves are ill-defined. For
example the flux from the right reservoir is easily seen to be given by

FR=i[HR, V]

=−
i
4
[(1+c) s (M+1)1 s (M+2)1 +(1− c) s (M+1)2 s (M+2)2 +2ls (M+1)3 , V],

a local observable which can be further expressed as

FR=
1− c2

8
(S12(M, M+2)−S21(M, M+2))

−l 11+c

4
S12(M, M+1)−

1− c

4
S21(M, M+1)2 . (2.6)

Moreover, since FL+FR=d(Hi+V) and Hi+V is a local observable, it
follows from Eq. (2.2) that

w(FL)+w(FR)=0, (2.7)

for any stationary state w. This is an expression of the first law of thermo-
dynamics (energy conservation). Note however that w(FR) does not
necessarily vanish since we can not apply (2.2) to the formal observable
HR. The second law of thermodynamics can be written as

Ep(w) \ 0. (2.8)
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This inequality has been proved in refs. 15 and 25 for any NESS
w ¥ S+(w0). In particular we can rewrite the entropy production as

Ep(w)=2d w(FR), (2.9)

and Inequality (2.8) states that energy is flowing through the finite box Zi,
from the hotter half-chain to the colder one.

It follows from the next result that the entropy production in the state
wbL, bR+ is strictly positive, provided bL ] bR. In particular, this state carries
a non-vanishing energy current.

Theorem 2.3. The entropy production in the NESS wbL, bR+ is given by

Ep(wbL, bR+ )=
d

4
F
2p

0

dt
2p
|o|

sh d |h|
ch2(b |h|/2)+sh2(d |h|/2)

.

Remark 4. One easily checks that the heat current wbL, bR+ (FR) is a
strictly monotonic function of the temperature difference TR−TL.

The positivity of entropy production has the following consequence on
the mathematical nature of the NESS.

Corollary 2.4. If bL ] bR, then the NESS wbL, bR+ is wM, bL, bR0 -
singular.

Our last result is about the decay of longitudinal correlations

CT3 (x) — wbL, bR+ (s (0)3 s (x)3 )−wbL, bR+ (s (0)3 )
2.

At thermal equilibrium (bL=bR), the truncated two-point function CT3 (x)
is known to decay exponentially as xQ. (see refs. 8 and 21). Since the
NESS Hamiltonian HNESS is long range (see Remark 3 in Section 2), we
expect these correlations to have a slower decay out of equilibrium.

Theorem 2.5. The truncated longitudinal two-point function CT3 (x)
decays like |x|−2 at infinity, i.e.,

0 < lim sup
x2Q.

|x2 CT3 (x)| <..
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Remark 5. Note that CT3 (x) is still summable. Therefore, we expect
the fluctuations of the magnetization

1

`|L|
C
x ¥ L
(s (x)3 −wbL, bR+ (s (0)3 )),

to satisfy a central limit theorem as L ‘ Z.

3. THE XY DYNAMICS OF THE INFINITE SPIN CHAIN

In this section, we briefly summarize a few well known facts about the
one-dimensional XY chain and the corresponding Cg-dynamical system.
Following Araki, (1) we describe this dynamical system as a group of
Bogoliubov automorphisms on a self-dual CAR algebra.

3.1. Kinematics

To each finite subset L of the lattice Z we associate the Hilbert space

HL — ë
x ¥ L

H{x},

where H{x} — C2. The corresponding set of observables is the full matrix
algebra

SL —B(HL).

For an arbitrary subset L … Z, the union

S0
L — 0

L …L

SL,

over all finite subsets of L is a f-algebra equipped with a Cg-norm. Its
completion

SL —S0
L, (3.10)

is a Cg-algebra: The infinite tensor product of the B(H{x}) for x ¥L. More-
over, if L and LŒ are disjoint subsets of Z, then the Cg-tensor product of
SL and SL

− is

SL éSL
−=SL 2L

−,
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(see Section 2.6 in ref. 9 and Section I.23 in ref. 27 for details). Since the
Pauli matrices

s1 — r
0 1
1 0
s , s2 — r

0 −i
i 0
s , s3 — r

1 0
0 −1
s ,

generate B(H{x}), SL is the algebra of polynomials in the matrices

s (x)a — · · · é 1 é 1 é sa é 1 é 1 é · · · ,

where the factor sa acts on H{x}, and x ¥ L. As a consequence of (3.10),
any element of SL is a uniform limit of polynomials in the matrices s (x)a ,
with x ¥L. In particular, SZ describes the kinematical structure of an
infinite chain of spins. In the following, we call SZ the spin algebra, and
denote it by S. We also fixM \ 0 and set

SL —S{x < −M}, Si —S{−M [ x [M}, SR —S{x >M}.

3.2. Dynamics

For any finite L … Z, the local XY Hamiltonian is defined by

HL — C
X … L

f(X), (3.11)

where the interaction f is given by

f(X)=˛
− 12 ls (x)3 , X={x},
− 14 {(1+c) s (x)1 s (x+1)1 +(1− c) s (x)2 s (x+1)2 }, X={x, x+1},
0, otherwise.

The parameters l (magnetic field strength) and c (anisotropy) satisfy

l ¥ R, c ¥ ]−1, 1[.

Clearly, HL is a self-adjoint element of SL, and the formula

y tL(A) — e itHLA e−itHL,

defines a norm continuous group of f-automorphisms of S. Since the
interaction f has finite range, the thermodynamic limit

y t(A) — lim
L ‘ Z

y tL(A)
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exists in norm for all A ¥S. Therefore, y t is a strongly continuous group of
f-automorphisms of S (see Theorem 6.2.4 in ref. 10). The Cg-dynamical
system describing the infinite XY chain is (S, y).

We denote by d the generator of the time evolution y. For any finite
L … Z we have SL … D(d), and for A ¥SL,

d(A)=i[HLŒ, A],

provided LŒ ‡ {x ¥ Z | dist(x, L) [ 1}.
According to standard time dependent perturbation theory, any self-

adjoint P ¥S induces a perturbed time evolution generated by d( · )=
d0( · )+i[P, · ], with D(d)=D(d0). The perturbed dynamics is given by the
norm convergent Dyson expansion

y t(A)=e td(A)=y t0(A)

+C
n \ 1
in F

t

0
dt1 F

t1

0
dt2 · · ·F

tn−1

0
dtn [y

tn
0 (P), [..., [y

t1
0 (P), y

t
0(A)] · · · ]],

and defines a perturbed Cg-dynamical system (S, y) (see ref. 10, Section 5.4
for details). Of particular interest to us is the perturbation

V — f({−M−1, −M})+f({M, M+1}),

which decouples the full XY dynamics y t as

y t0=y tL é y ti é y tR,

according to the factorization

S=SL éSi éSR.

Let h be the f-automorphism of S which rotates all spins around the z-axis
by an angle of p,

h(s (x)1 )=−s (x)1 , h(s (x)2 )=−s (x)2 , h(s (x)3 )=s (x)3 . (3.12)

Since h is an involution, it induces a decomposition S=S++S− into even
and odd subspaces,

S± — {A ¥S | h(A)=±A}.

Note that S+ is a Cg-subalgebra of S. Since h(f(X))=f(X), S± are
invariant under y t0 and y t.
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For b ¥ R, let wbL be the unique (yL, b)-KMS state on SL. We define
similarly wbR, and denote by wi the normalized trace on Si (i.e., the
unique (yi, 0)-KMS state). By the uniqueness of these states and the fact
that h commutes with the decoupled dynamics y t0, the state

wM, bL, bR0 =wbLL é wi é wbRR , (3.13)

vanishes on the odd subspace S− . Therefore, to study the limit

wbL, bR+ (A) — lim
tQ+.

wM, bL, bR0 p y t(A),

it suffices to consider A ¥S+. In other words, only the even part (S+, y) of
the XY dynamical system is of interest to us.

3.3. The Fermionic Picture

For computational purposes, we shall now follow (1) and apply a Jordan–
Wigner transformation to map the spin algebra S+ into a more convenient
CAR algebra. Let A be the Cg-algebra generated by S and an element
T ¨S satisfying

T=Tg, T2=1, TA=h−(A) T, (3.14)

where h− is the f-automorphism of S given by

h−(s
(x)
a ) — ˛

−s (x)a , a=1, 2, x [ 0,
s (x)a , a=1, 2, x > 0,
s (x)a , a=3, x ¥ Z.

It follows immediately from (3.14) that the enlarged algebra A can be
written as

A=S+TS.

For any x ¥ Z, define S (x) ¥S+ by the formula

S (x) — ˛s
(1)
3 · · ·s

(x−1)
3 , x > 1,

1, x=1,
s (x)3 · · ·s

(0)
3 , x < 1.
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A simple calculation shows that the elements of TS− defined by

ax — TS(x)(s
(x)
1 −is

(x)
2 )/2, agx=TS

(x)(s (x)1 +is
(x)
2 )/2, (3.15)

are fermionic annihilation and creation operators: They satisfy the canoni-
cal anticommutation relations (CAR)

{ax, ay}=0, {agx , a
g
y}=0, {ax, a

g
y}=dx, y, (3.16)

where {A, B} — AB+BA. We denote by F the Cg-subalgebra of A gener-
ated by these annihilation and creation operators, and we remark that

F …S++TS− . (3.17)

Extending the f-automorphism h to A by setting

h(T) — T,

yields the decomposition F=F++F− . Moreover, from Eq. (3.15), we
obtain that ax and agx are odd. Note that the relations (3.15) are easily
inverted to give

s (x)1 =TS
(x)(ax+a

g
x), s (x)2 =i TS

(x)(ax−a
g
x), s (x)3 =2a

g
xax−1, (3.18)

from which we conclude that

S … F++TF− . (3.19)

The two inclusions (3.17) and (3.19) finally yield

S+=F+, S−=TF− .

In particular, we have f(X) ¥ F+, and a simple calculation leads to the
following explicit formulae

f(X)=˛ −
1
2 l(2agxax−1), X={x},

1
2 {a

g
xax+1+a

g
x+1ax+c(agxa

g
x+1+ax+1ax)}, X={x, x+1},

0, otherwise.

3.4. The Bogoliubov Automorphism

Let h — a2(Z) é C2 4 a2(Z) À a2(Z) and define the linear map

h ¦ f — (f+, f−)W B(f) — C
x ¥ Z

(f+(x) a
g
x+f−(x) ax) ¥ F− .
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It follows from the CAR (3.16) that this sum converges in the Cg-norm of F,
and that

{Bg(f ), B(g)}=(f, g) 1, (3.20)

where we have set Bg(f ) — B(f)g. Moreover,

Bg(f )=B(Jf),

where J is the antiunitary involution on h defined by

J:(f+, f−)W (f̄− , f̄+).

Clearly, F is the Cg-algebra generated by polynomials in B(f), and, since
h(B(f ))=−B(f), the even part F+ is generated by even polynomials in
the B(f). Thus F is a self-dual CAR algebra as introduced by Araki in
ref. 3 (see also refs. 5 and 14).

To a finite rank operator k —;n
j=1 fj (gj, · ) on h, fj, gj ¥ h, we asso-

ciate

B(k) — C
n

j=1
B(fj) Bg(gj) ¥ F+, (3.21)

which is easily seen to depend only on k and not on its representation in
terms of gj and fj. The following properties are immediate consequences of
this definition and of the CAR (3.20):

B(kg)=B(k)g,

B(k+j(k))=tr(k) 1,

[B(k), B(f )]=B((k−j(k)) f ),

[B(k), B(kŒ)]=B([k−j(k), kŒ−j(kŒ)])/2,

where j(k) — JkgJ. In particular, if k+j(k)=0, one has

e tB(k)/2 B(f) e−tB(k)/2=B(e tkf). (3.22)

The local HamiltonianHL can be expressed as

HL=B(hL)/2, hL= C
X … L

j(X),
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where the non-vanishing j are given by

j({x}) — −l |xPOx| é s3, j({x, x+1}) — cx é s3− csx é s2,

with

cx — (|xPOx+1|+|x+1POx|)/2, sx — (|xPOx+1|− |x+1POx|)/2i.

Since j(X)+j(j(X))=0, the local dynamics yL extends from S+ to a
Bogoliubov automorphism of the self-dual CAR algebra F

y tL(B(f ))=B(e
ithLf).

The limit L ‘ Z leads to

y t(B(f ))=B(e ithf),

where the translation invariant Hamiltonian h —;X … Z j(X) is given, in
the Fourier representation h=L2(S1, dt2p) é C2, by the formula

h — (cos t−l) é s3− c sin t é s2. (3.23)

The decoupled dynamics y0 is implemented in a similar way in the self-dual
CAR algebra. The corresponding Hamiltonian h0 decouples according to
the decomposition

h=a2(ZL) é C2 À a2(Zi) é C2 À a2(ZR) é C2.

It is given by

h0 — h−v=hL À hi À hR, (3.24)

where the finite rank perturbation v looks like

v — j({−M−1, −M})+j({M, M+1}). (3.25)

3.5. Quasi-Free States

A quasi-free state on F is a state w which vanishes on F− and satisfies
the Wick expansion formula

w(B(f1) · · ·B(f2n))=C
p

sign(p) D
n

k=1
w(B(fp(2k−1)) B(fp(2k))), (3.26)
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where the sum runs over all permutations p ¥ S2n, with signature sign(p),
such that

p(2k), p(2k+1) > p(2k−1).

Such a state is completely characterized by its two-point function
w(Bg(f ) B(g)), which in turn determines a bounded operator T on h such
that

(f, Tg) — w(Bg(f ) B(g)).

Any self-adjoint operator T on h such that

0 [ T [ I, T+j(T)=I, (3.27)

determines in this way a unique quasi-free state on F (see ref. 3). Let k be a
self-adjoint operator on h such that k+j(k)=0, and yk the corresponding
group of Bogoliubov automorphisms of F (i.e., y tk(B(f ))=B(e

itkf)).
Then, (1+ebk)−1 satisfies Condition (3.27) and the corresponding quasi-free
state is (yk, b)-KMS. It follows that the state wM, bL, bR0 defined in
Eq. (3.13), or more precisely its restriction to F+, extends to the quasi-free
state on F determined by

T0 —
1

1+ek0
, (3.28)

where

k0 — bL hL À 0 À bR hR. (3.29)

4. SCATTERING THEORY

In this section, we apply Ruelle’s scattering approach (see ref. 25) to
the construction of non-equilibrium steady states of the Cg-dynamical
system (F, y). Due to the fact that the dynamics is implemented by a group
of Bogoliubov automorphisms, the analysis reduces to a simple Hilbert
space scattering problem.

Lemma 4.1. For any A ¥ F, the norm limit

c+(A) — lim
tQ+.

y−t0 p y t(A)
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exists. The Møller morphism c+ is completely characterized by

c+(B(f ))=B(W− f),

for f ¥ h, where the wave operator W− is given by

W− — s − lim
tQ+.

e−ith0e ith.

Proof. It follows from Eq. (3.23) that h has purely absolutely con-
tinuous spectrum. Since the perturbation v is finite rank, it follows from
Kato–Birman theory that the wave operator W− exists and is complete (i.e.,
Ran W−=Ran Pac(h0), where Pac(h0) is the orthogonal projection onto the
absolutely continuous spectral subspace of h0, see for example Theorem
XI.8 in ref. 23). From the CAR (3.20), we get the estimate ||B(f )|| [ ||f||,
from which we conclude that

y−t0 p y t(B(f ))=B(e−ith0e ithf)

converges in norm to B(W− f). The norm convergence of y−t0 p y t(A)
extends by continuity to all A ¥ F. L

Since the state wM, bL, bR0 defined in Eq. (3.13) is invariant under the
decoupled dynamics y0, we have wM, bL, bR0 p y t=wM, bL, bR0 p y−t0 p y t. There-
fore, y has a unique steady state wM, bL, bR+ corresponding to this initial state,

wM, bL, bR+ (A) — lim
tQ+.

wM, bL, bR0 p y t(A)=w0 p c+(A).

This clearly proves Theorem 2.1.
The following is an immediate consequence of Lemma 4.1.

Corollary 4.2. The steady state wM, bL, bR+ is quasi-free on F. Its two-
point function is given by

wM, bL, bR+ (Bg(f ) B(g))=(f, T+g) — (f, W
g
−T0W− g). (4.30)

We now proceed with the explicit evaluation of the last formula by
decomposing the wave operator into left and right components. Let us
denote by iL the natural injection

iL: a2(ZL) é C2Q a2(Z) é C2,

and define similarly iR.
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Lemma 4.3. The wave operator W− can be written as

W−= C
a ¥ {L, R}

ia Wa,

where the partial wave operators are defined by

Wa — s − lim
tQ+.

e−itha iga e ith.

The intertwining property

ha Wa=Wa h,

holds. Moreover, the asymptotic projections

Pa — s − lim
tQ+.

e−ith iai
g
a e ith, (4.31)

exist, are given by

Pa=Wg
aWa, (4.32)

and satisfy

PL+PR=1, [Pa, h]=0.

Proof. Since hai
g
a −i

g
ah are finite rank, the existence of the partial

wave operators Wa and the fact that

Wg
a=s − lim

tQ+.
e−ith ia e ithaPac(ha),

follow again from Kato–Birman theory. Eqs. (4.31) and (4.32) are conse-
quences of the chain rule. The fact that the Pa are complementary orthog-
onal projections commuting with h follows from the Davies–Simon
theory. (12) The decomposition of W− follows from the formula

iae−itha=e−ith0ia,

and the fact that I−iL i
g
L−iR i

g
R is finite rank. L

Recall that b — (bR+bL)/2 and d — (bR−bL)/2.

Corollary 4.4. The operator T+ defining the steady state wM, bL, bR+

(see Eq. (4.30)) has the following form

T+=(1+ek+)−1.
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Moreover,

k+=bh+dsh,

where s — PR−PL.

Remark. Since k+=bLhPL À bRhPR, the state wM, bL, bR+ describes a
mixture of two independent species: Left-movers corresponding to PRh are
at thermal equilibrium at inverse temperature bR and right-movers corre-
sponding to PLh are at thermal equilibrium at inverse temperature bL. The
state wM, bL, bR+ has a very similar structure to the conducting equilibrium
states of quantum wires studied by Alekseev, Cheianov, and Fröhlich in
ref. 4. This connection remains to be studied in more details.

Proof. Going back to Eqs. (3.28) and (3.29) and using the fact that
k0=bLiLhLi

g
L+bRiRhRi

g
R, we easily obtain from Lemma 4.3 and Eq. (4.30)

that

T+=(1+ek+)−1,

where k+ is given by the formula

k+=bL Wg
LhLWL+bR Wg

RhRWR=(bL PL+bR PR) h=bh+dsh. L (4.33)

We now relate s to the asymptotic velocity of the dynamics generated
by h. Let us introduce the position and velocity operators

x — −i“t é 1, p — −i[h, x],

on h. Using a standard notation, we can write

h=h
¯
(t) ·s

¯
, p=p

¯
(t) ·s

¯
,

where

h
¯
(t) — R 0

− c sin t

cos t−l

S , p
¯
(t) — R

0

− c cos t

− sin t

S .

Lemma 4.5. We set xt — e−ithx e ith. Then, the asymptotic velocity

v− — lim
tQ+.

xt
t
,
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exists in the strong resolvent sense. Moreover,

v−=mh,

where m — p
¯
· h
¯
/h
¯
· h
¯

. Finally, the following formula holds

s — PR−PL=sign v− .

Proof. By Eq. (4.31), we have

s=s − lim
tQ+.

e−ith(iRi
g
R−iLi

g
L) e ith,

and since iRi
g
R−iLi

g
L is equal to sign(x), up to a finite rank operator, we

also have

s=s − lim
tQ+.

sign(xt)=s − lim
tQ+.

sign 1xt
t
2 .

A straightforward calculation gives

ẋt=pt=e2 t h¯ ·S¯ p
¯
·s
¯
,

where the matrices Sa are the generators from the Lie algebra of SO(3),
i.e., (a

¯
·S
¯
) b
¯
=a
¯
Nb
¯

for a
¯
, b
¯
¥ R3. Decomposing p

¯
into components parallel

and orthogonal with respect to h
¯

, we get

pt=mh+e2 t h¯ ·S¯ p
¯

+ ·s
¯
. (4.34)

A further integration and some elementary estimates lead to

xt=x+tmh+bt |h|−1,

where bt is a bounded operator such that ||bt || [ 1 for all t ¥ R. Thus, for f
in the dense subspace D(x) 5 D(|h|−1), we have limtQ+. t−1xtf=mhf. It
follows that

lim
tQ+.

xt
t
=mh,

in the strong resolvent sense. Moreover, since mh has purely absolutely
continuous spectrum, we also have

s − lim
tQ+.

sign 1xt
t
2=sign(mh). L
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5. PROOFS

In this section, we complete the proofs of the results stated in Section 2.
Theorem 2.1 has already been proved in the previous Section.

Proof of Theorem 2.2. By Corollary 4.4 and Lemma 4.5, the
operator T+ has purely absolutely continuous spectrum, commutes with
translations and is independent of M. Using Corollary 4.2, Theorem 2.2
follows immediately from Corollary 4.10 and Lemma 4.11 in ref. 3 and the
fact that

s (x)3 =B(|xPOx| é s3),

Smn(x, y)=B(|xPOy| é smn). L

Proof of Theorem 2.3. From Lemma 4.5, simple manipulations
lead to

s=sign v−=sign(mh)=sign(m)
h
¯
|h
¯
|
·s
¯
=sign(h

¯
· p
¯
)
h
¯
|h
¯
|
·s
¯
=sign(o)

h
¯
|h
¯
|
·s
¯
,

and hence

sh=sign(v−) h=sign(o) |h|.

Another straightforward calculation gives

tr(T+)=1+sign(o)
sh d |h

¯
|

ch b |h
¯
|+ch d |h

¯
|
,

tr(s1T+)=0,

tr(s2T+)=−
sh b |h

¯
|

|h
¯
|

c sin t

ch b |h
¯
|+ch d |h

¯
|
,

tr(s3T+)=−
sh b |h

¯
|

|h
¯
|

l− cos t

ch b |h
¯
|+ch d |h

¯
|
,

which, together with Eqs. (2.6) and (2.9) lead to Theorem 2.3. L

Proof of Corollary 2.4. Since the NESS wbL, bR+ is a factor state, it is
either normal or singular with respect to the initial state wM, bL, bR0 by
Theorem 3.2 in ref. 16. When Ep(wbL, bR+ ) > 0, the first alternative is
excluded by Proposition 4.4 in ref. 16. This proves Corollary 2.4. L

Non-Equilibrium Steady States of the XY Chain 1173



Proof of Theorem 2.5. Using the Jordan–Wigner transformation
(3.18), the function CT3 (x) is mapped into a four-point function which can
be reduced by the Wick expansion (3.26) to

CT3 (x)=4 det Ť+(x),

where Ť+(x) is the inverse Fourier transform of T+(t). An explicit calcula-
tion shows that

CT3 (x)=−1F
2p

0

dt
2p

sign o
sh d |h|

ch b |h|+ch d |h|
sin tx2

2

+r(x),

where the remainder r(x) is exponentially decreasing as x tends to infinity.
Theorem 2.5 follows from an elementary analysis of the singularities in the
above integral. L
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